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AND INITTAY, TWIST ON TORSIONAL STIFFNESS OF A
CANTILEVER PLATE SUBJECTED TO
THERMAT. STRESSES

By Richard R. Heldenfels and Louis F. Vosteen
SUMMARY

An gpproximete analysis of the nonlinear effects of Initial twist
and large deflections on the torsional stiffness of a cantilever plate
subjected to a nonuniform temperature distribution is presented. The
Von Kérmén large-deflection equations are satisfied through the use of
e variationel principle. The results show that initial twist and applied
moments can have significent effects on the changes in stiffness produced
by nonuniform heating, particularly in the region of the buckling temper-
ature difference. Results calculated by thils approximate analysis are
in satisfactory agreement with measured torsional deformations and chenges .
in nastursel frequency. '

INTRODUCTION

One of the structural problems of high-speed flight 1s the reduction
of effective stiffness of structures due to the thermal stresses produced
by aerodynemic heating. A reduction in torsional stiffness can be an
important factor in aerocelastic problems as indlcated in references 1 -
and 2. A similar reduction in stiffness produced by thermel stresses
presumebly caused the flutter and failures of same structural models
described in reference 3. A simple method for c-.alculalting the reduction
in torsional stlffness of thin wings is presented in reference 4. . In
reference 5 the results calculated from a smesli-deflection plate theory
are compaered with experimentally determined changes in the torsional
stiffness of a cantilever plate rapidly heated along the longlitudinal
edges. The theory used in reference 5 predicted the general effect of . -
thermal stresses on the torsional stiffness, as indicated by measurements
of torsional deformation and changes in naturel frequency of vibration,
but overestimated the magnitude of the changes.
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The purpose of this paper 1s to present the results of an aspproximate
analysis to show that the differences between theory and experiment noted
in reference 5 are due to the nonlinear effects of large deflections and
initial deformations not included in the small-deflection analysis. The
analyticel spproach used to account for large deflectlions and initial
deformations is presented, the general significance of the results is
discussed, and calculated velues are compared with the experimental data
of reference 5.

SYMBOLS
a plate length in‘x-direction
Ay,An, .00 A coefficients of series expanslon for plate deflection
b half-plate width in y-direction
c coefficient of stress function
Et3

D plate flexural stiffness, —7F———

12(1 - 2)
E modulus of elasticity
F stress function defining stress distribution in plate
f1,f0,...T3 selected functions of x and ¥y
I1,I0,...14 values obtained from definite integrals
GJ torsional stiffness
(@I torsional stiffness of flat, unstressed plate.
A(GT) incremental torsional stiffness
A(GJ)i initial incrementel torsional stiffness before heating
A(GJ)min minimum incremental torsional stiffness
m nondimensional moment

M applied moment (positive in direction of positive twist)
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ct

presgsure

plate thickness

temperature

particular temperature difference

critical value of AT

total plate deflection

initial plate deflection
coardinate axes

coefficient of thermal expansion
small dynemic perturbation
exponential parameter of tempersture distribution function
twilst at plate tip

initial twist at plate tip

temperature ratio, AT/ATcr

value of A corresponding to A(GI)yp
Poisson's ratio

density

normal stresses in plane of plate in x- and y-directions,
respectively, positive for tension

shear stress in plane of plate

time

nondimensional twist
Initial nondimensionsl twist
circular frequency

circular frequency of unheated perfect plate
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Wy initial circular frequency

Qi n N minimum circular frequency
32 ,2°

V2 differential operator, 3 + =
3" ¥y

- ; 4 4 b

V')+ differential operator, 0 n + 2 0 9 n

ox dx2 3y2 dy

Double dot indicates second derivative with respect to time.
ANATYSIS

Statement of Problem

The studies presented herein are primerily concerned with the twist
of a uniformly thick rectangular cantilever plate shown in figure 1. The
equations are derived to consider the effects of initial twist, applied
moments, and thermal stresses on the torsional deformations and natural
frequencies of plates. The analysis involves an approximate solution of
the Von Kérmén large-deflectlon equations which have been modified to
include the effects of initlal imperfections and nonuniform temperature
distributions. The modified equations are (from ref. 6) .

2 )
e o e PT 4 B |[2F —a‘;a‘e’-(wi) +——Z—i—%i- (1)
ox Jdy dx“= oy ox 9y, ox~ oy

(% 3% , 3%F 2 w%e%) (10)

Vh(W-Wi)= + (L E QW 4 -2
DMaEMay dx dy ox dy

where ¥ 18 the stress function such thst

= QEE . (2a)

Ox
Byz
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_ 3%
% dx= (20)
3% (20)

T T % oy

Equation (1a) is the differential equation for compatibility in the
plane of the plate and equation (1b) i1s the differentisl equation for
equilibrium of forces acting perpendicular to the plane of the plate.
The solution of equations (l), subject to the proper boundary conditions
on the deflections and stresses, describes the behavior of the plate under
the applied loads p and the temperature distribution T. For the pur-
pose of this peper the assumption is made that no external loads are
applied in the plene of the plate so that the inplane stresses defined
by the stress function F are zero at the free boundaries (stress-free
edges). Equations (1) apply to both the dynamic and the static problem
if p 1ncludes the dynamlc losds as well as static loads.

Approximate Solution of Equations

Exact solutions of the Von Kérmén large-deflection equations are
difficult to obtain, but epproximate solutions can be cbtained to any
desired accuracy by several methods. For the analysis herein equations (1)
will be satisfied through the use of the following veriational principle:

2 2
SQ/.‘% |:V2(W' - Wi):lz _ 2(1 _ [J.) 3 (;Tx; Wi) P (W‘ ; Wi) i

dy’
2 ' 2
M) exay s [ ﬁ(@)e_(m) \
ox Jdy 2 By2 ox ox
3% (2w \" _ ﬂ)e _ T _w_éw_-iﬁ_%) ax dy -
3x“|{\dy dy ox dy\Ox oy ox OJy

THlET (B -5l

x> oy x dy

\[[tmT(% + %Eg)dx dy - ﬂp(w -wi)dx dy | =0 (3)
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This principle is essentielly a particularization of one given by
Reissner (ref. 7) and alsoc has been modified to include the effects of
initial deformations and e nonuniform temperature distribution. The
deflection w must satisfy the geometrical boundsry conditions, that
is, the conditions imposed on slopes and deflections. Veristion of
equation (3) with respect to F yields equation (1la) and the assoclated
natural boundary conditions, and varilastion with respect to w yilelds
equation (1b)} and the associsted natural boundary conditions.

The following assumptions for stress, deflection, and temjerature
are made: N

3
F = Cfy
w = b9f2 i

[ (4)
Wi = beifz
T = ATfB

P

where the stress coefficient C and the tip twist 6 are to be deter-
mined by means of the veriationel prineiple. The functions £, fo,

and f3, the initial tip twist ©;, and the temperature coefficlent AT
are presumed to be known. Selection of these quantitles is discussed 1in
appendix A. It should be noted here that, although the temperature
distribution is consldered to vary with time, the shapes of the plate
deflection and of the stress function are assumed to remain comstant
during heating or losding.

The unknown coefficlent of the stress function C is obtained by
substituting equations (4) into equation (3) and taking the variation
with respect to C. The result is

C =B AT(%) + 2262 - ;) (-E) (5)

where - .

2, \2 2.\% 2. N\2a. . 2, \2
Il=ﬂ<§§) +<é—f—l) -Eil-a—ij;gﬂ.+2(l+p.)<afl) dx dy
y _

o>
“ - - - (6)

A
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) f1 . o fl)
Is = f
2= [ 3( e (7)
2 2 2 2
I ﬂl 3% 97fy f2) RS TP AN O f1 Ofp ofp 8)
370 252 32 Oy /|  ox dy ox 9y

The relation between the twist, the losd, and the temperature is
obtained by performing the variation on equation (3) with respect to the
twist © with C held constant. The resulting relationship is

Dbz(e - 84)Ty + 2th2913 - bﬂpfa dx dy = O (9)

where

2

°f
I =ﬁ 2
l‘ (3}(2

2 2 2
azfe 32f2 82f2 an
el By ey R G ax dy
oy ox= oy 3x dy; By

(10)

The pressure loading p now will be considered to consist of a static
loading pg eand a dynamic or inertis loading ot ¥ so that

p=pg - pt ¥ (11)

For this analysis the lateral static load pg will be restricted

to two equal concentrated loads P applied at the corners x = a,
y = b 1in ‘such a way as to form a couple about the x-axis. Then

ﬁ pfp dx dy = —J:5 ptbEIg (12)
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where
Iy = ﬂ s(x-a)[8(y-b) ~ B(y)| £, ax @y (13).

Ig =ﬂf22 ax dy | (1)

M = 2bP - (15)

end & 1s the Dirac delta function.

If the value of C from equation (5) is substituted into equa-
tion (9) and the terms are rearranged, the resulting expression is

2
2 M b 2tp° IsTo _ oppt 2 (I
b7(8 - 81)Iy = 55l5 ~ ¢ tD BIg + S22 t 8 By AT —— = ?b— Ee(e - 912:) z

(16)

which gives the relationship between twist, appllied moment, inertia
loading, and temperature.

Definition of Parameters
It 1s convenlent to define certaln psrameters which can be obtained

from equation (16) when the large-deflection effects are neglected and
the initial twist 6; is O. Then, from equation (16)

2 2 I;I
2 tb” g 2tb 9 52
beI), = 3115 - p 35 8Ig + 55 EhﬂAT I (17

If the plate is not vibrating and no loaeds are applled, the critical,
or buckling, temperature difference is obteined from equation (17) as

. D Ialy
cr ” 2Eat 1213 (18)



NACA TN LO67 9

Similarly, when the plate is not vibrating and the temperatiwre is
uniform (AT = 0) but the load is acting, the moment-twist relation is’
glven by .

g = (19)
(GJSO
where (GJ) o 1s the torsional stiffness of the flat plate given by

(a3)g = 26°D %* _ | (20)

In the absence of heating and loading the freguency may be found to be

2" = % 5 | (21)

=
N

When equations (18), (19), (20), and (21) are substituted into equa-
tion (16) the result may be written as

o) 2
M L g8 . 9(92 - eia)aEtb [t5) (22)

8 = ei =
2
(GTg g AT, D I,

If a "nondimensional™ twist is defined so that

2 .
o /EEth (I3)
=8 y= N (23)

along with a nondimensional moment

1 w2 (I5)° (o)

(GJ) o D IiL

and a temperature reatio

(25)

iz
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equation (22) may be written simply a&s -

@'@1=m+7\¢'¢<@2-¢12)'a—3)'-g¢ (26)

Application to Static Problem

The reletionship between twist, moment, and temperature 1is given by

equation (26) when the dynsmic term —l§ 9~ 1s O. Equation (26) then
ay

becomes
cp-cpi=m+?\cp-q>(q>2-cp12) (27)

The incremental stiffness of the plate, defined as the rate of change of
moment with respect to twist, is given by

AGT) _ _a oM
(GJ)O (GJ)O 36

or, from equation (27),

AGT) _om _ . 2 02
?6375 So 1-A+ 3¢? Py (28)

Application to Dynamic Problem

In order to determine the effect of temperature, moment, and initial
twist on the natural frequency of torsional vibration, the quantity @
in equation (26) is replaced by ¢ + € sin wr where ¢ is consildered
to be the static solution obtained from equation (27) sand € represents
a small dynamic perturbation about the static equilibrium position. Sub-
tracting equatian (27) from the perturbated relation, neglecting higher
order terms in e, and dividing by € sin wr yilelds

2
1=2A- 3¢? + ¢32 + (ﬁ%)

»
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. The frequency may then be written in terms of the twist and tempera-
ture as .

(%)2=1-7\+3cp2-cp12 © (29)

which is identical to the incremental stiffness (eq. (28)). This identity
results from assuming similsar deflection mode shapes for thermal buckling,
twist due to applied moment, and torsional vibration and would not be
expected to spply if the mode shepes involved were different.

RESULTS AND DISCUSSION

General Regults of Equations

The behavior of the plate as determined by equation (26) is discussed
in the following sections for several combinations of conditions. In most
cases the calculations include large values of initial twist and applied
moment end have been cerried well into the region where the temperature
difference AT exceeds the critical value. Although some of the results
may be beyond the range for which the anslysis is accurate, these results
have been presented to illustrate the trends indicated, by the equations
despite the fact that they may not be quantitatively correct in some
reglons.

Twisting due to an applied moment.- The twisting of the plate due
to an epplied moment is given by equation (27) if the temperature ratio A
is set equsal to 0. The results from this expresslon are presented i~ fig-
ure 2 for various values of the initial twist.

In figure 2, small-deflection results would plot as lines at h5° to
the coordinate axes. The large-deflection results become increasingly
different as the moment or initial twist is increased and indicate that
the plate becomes substentially stiffer as the twist is Increased.

Buckling due to nonuniform heating.- The twist of the plate (assuming

that the buckling mode is a twisting action) 1s given by equation (27)
when the moment m is O; for the initlally flat plate ¢; would also

be 0. The initially flat, or perfect, plate begins to deiorm only after
the critical temperature difference is reached, whereas, as indicated by
equation (27), the plate with initial twist begins to deform immediately
upon heeting. The results obtained from evaluation of equation (27) are
given in figure 3 for several values of the initisl twist.
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If the initial twist 1s large, a plot of twlist sgainst temperature
ratio, like figure 3, does not give an accurate indication of the buckling
temperature. Only if the initial twist is small is there a definite knee
in the curve as the buckling temperature 1s epproached, but this knee
occurs below the buckling temperature of the perfect plate.

Combined actlion of applied moment end nonuniform heating.- Equa-
tion (27) applies directly to this case but may be more convenlently
written as

?-9 - ANo+ @Qma - @'2) =0 (30)

where
=g +m (31a)

and .
A= A - (m2 + 2mq>i) (31b)

Equation (30) now has the same form as equation (27) when m is set
equal to 0. The results plotted in figure 3 then apply to this case
elso if @ 1s replaced by o' and A by A'. The moment then effec-
tively acts the same as an initiasl twlst if the tempersture ratio is

reduced by the quantity m2. + 2my .

In figure & the relation between moment and twist has been indicated
for two values of initial twist and several velues of A. These curves
show the characteristic increase in stiffness as the twlst increases but
also show a reduction In stiffness as the temperature ratio lncreases.
These changes in stiffness are examined further 1n the following section.
The portions 'of the curves where the slope 1s negstive have been shown
‘as dashed lines and are reglons of umstable equilibrium which would not
exist in the physlcal problem. The unstable portion of the curve exists

whenever A + cpiE - 3q)2 > 1.

Freguency and incremental stiffness.- As has been noted, the square
of the frequency ratlio (eq. (29)) varies in the same manner as the incre- .
mental stiffness (eq. (28)) and, therefore, eny of the following discus-
sion pertaining to stiffness app].ies directly to the square of the fre-
quency. Also, the figures which are presented for the incrementsal
getiffness have been lsbeled with the square of the frequency ratio as
well as wlth the stiffness ratio.
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The variation in incremental stiffness with temperature given by
equation (28) is shown in figure 5 for several values of initial twist
when m 1is equal to 0. The results show that, when the perfect plate
is heated, the stiffness decreases linearly as the thermal stresses
develop and becomes zero when the buckling tempersture difference is
reached. Further heating causes the plate to twist and the twisting in
turn leads to an lncrease in stiffness at a rate twice that of the initial
decrease.

If the plate has an inltial twlst, the heating causes the twist to
incredse as the heating progresses. This twist leads to an increase in
stiffness that tends to counteract the reduction produced by thermal
stresses and, as & result, the stiffness first decreases and then
increases without going to zero. The points of minimum stiffness occur
at temperstures lower than the buckling temperature. The locus of points
of minimum stlffness has been 1ndicated in figure 5 by the dashed line.
If the initial twist is sufficiently large, the stiffness does not
decrease but increases with heating.

When a moment is applied to the plate, figure 5 will indicate the
incremental stiffness of the plate if ¢, 1s replaced by @' and A

by A' (as defined by egs. (31la) and (31b)).

The locus of polnts where the incremental stiffness 1s a minimum
is glven by the equations ’

2/3

2/3
7&nin=l"q312"3(cp1:m) (53)
or
Ik S .

Equations (33) and (34) show that the nonuniform heating will increase
the stiffness of the plate if the initial twist is greater than that

given by
2/3 .

P, + m
3(14') "o =2
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The initiel incremental stiffness of the plate 1s given by equa-
tion (28) when A is O. The ratio of the minimum to the initial incre-
mental stiffness therefore may be written as - )

2/3

MG min - 5(&11;3)

AENs 1+ 30R - g2

(35)

Some results from equation (35) have been plotted in figure 6. This fig-
ure indicates that small changes in the initial twist mey cause large
changes in the minimum incremental stiffness. The effects of applied
moment are again similar to those of initial twlst and certain combina-
tionsg of the two can lead to .drastic stiffness changes. For negative
values of @; the curves would be similar, with the stiffness ratio

going to zero whenever Py = -m.

Comparison With Experiment _

Results calculated with the previously derived equations are compared
in the following sections with the experimental results reported in refer-
ence 5. The results glven in reference 5 aré -for a square cantilever
plate which was heated along the two longitudinel edges by carbon-rod
radistors. Typical temperature histories of points on the heated edge
and on the longitudinal center line are given in figure 7. Heat was
supplied to the plate edges for 16 seconds; then the plate was allowed
to cool. The deformations of the plate under the influence of nonuniform
heating were determined for the conditions of no loed and spplied positive
and negative tip moments. The changes in natural frequency of the first
torsion mode were alsc measured during a heating test. ;

The expressions used In reference 5 for stresses, deflectlons, and
temperature are retained except thet herein only three terms are used
for the deflections. In nondimenslonal form these expressions are

N > 2 v 5 2

£y == (37)
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and
£, = (é:)g (38)

The function £ satisfies the condition of zero stress on the free
edges and f, specifies zero slope and deflection along the root. The

two undetermined coefficients of equation (37) are established from the
small-defiection buckling analysis and carried through the large-
deflection anslysis as constants. Thelr values are given in appendix A
along with deta on the influence of the number of terms in the deflection
function on the accurascy with which the buckling temperature difference,
natural frequency, and ratio of twlst to an spplied moment can be calcu-~
lated. The exponential parameter ¢ of the temperature function is
adjusted to spproximate the variation in the temperature distribution
during a test.

The numerical evaluation of the Iintegrals and related functions
required for comparison of theory and experiment are given in appendix B.

Initial plate shape.- The initial shape of the plate of reference 5
was measured and is indicated in figure 8. In the selection of a value
of initiasl twist, the higher order shapes (which are wmlikely to have
much influence on the twisting) have been ignored. The free corners
were connected by a straight line 1n order to obtain a value of Initial
twist of - 04 = 0.35° which was used for comparison of theory and
experiment.

Twist due to an applied moment.- The deformations resulting from
heating for three values of applied tip moment are presented in figure 9
and compsred with curves calculated by use of a value of 84 = 0.35°,

The agreement between theory and experiment is satisfactory, although

the theory overestimates the twist in the viecinity of the maximum temper-
ature difference (sbout 16 seconds). No theoretical results are presented
past 20 seconds because, beyond this time, the actual temperature distri-
bution cannot be represented very well by the one-parasmeter temperature
function.

Another compsrison of measured and calculated deformations is shown
in figure 10 where the abscissa i1s the temperature difference instead of
time. Because the shape of the temperature distribution changes with
time, the portion of the curve for decreasing AT does not retrace the
heating portion.

Natural freguency.- The changes in natural frequency during a heating
test are shown in figure 11 and compared with a calculated curve for
01 = 0.350 and with the small-deflection results of reference 5. The
results calculated by the use of the large-deflection equations are in
good agreement with experimental values and account for the frequency
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increase measured in the vicinity of the buckling temperature. A sub-
stantial improvement is noted over the predictions of small-deflection
theory. In figure 12 the frequency ratio is shown as s function of
temperature difference.

CONCLUDING REMARKS

An spproximate enalysis of the effects of initlal twist and lerge
deflections on the torsional stiffness of a cantilever plate subjected
to nonuniform hesting shows that for a perfectly flat plate the effective
stiffness, and thus the torsional frequency, decreases with increasing
thermal stress, Jjust as predicted by small-deflection theory, and goes
to zero when the buckling temperature difference is reached. Beyond
the buckling temperature, however, the stiffness, and thus the frequency,
increases as the plate twists. If the.plate has an initial twist, it
begins to deform immedistely upon heating and the stiffness decreases
in much the same way as. that of the perfect plate. The incremental
stiffness of the initially twisted plete, however, reaches a minimum -
greater than zero before the theoretical buckling tempersture difference
is reached; further heating then increases the stiffness. The minimum
incremental stiffness is a function of the inlitial twist and, if the
Initlel twist is sufficiently large, no reductions in stiffness are
obtalned and nonuniform heating then always increases the stiffness.

These results for stiffness changes associated with the torsional
frequency are also appliceble to the stiffness of the plate with respect
to small changes in the applled moment. In this case the applied moment
hag an effect similar to the effect of an initial twist. If the applied
moment exactly counteracts the initial twist, the plate behaves in much
the same way as the perfect plate.

Calculated results were compared with available experimental data
and were found to be in satisfactory agreement in view of the approximate
nature of the calculstions.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., May 15, 1957.
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APPENDIX A
DISCUSSION OF MODAI, FUNCTIONS USED IN THE ANALYSIS

In the analysis of the torsional deformations of the cantilever
plate by small-deflection theory, a deflection function containing six
terms antisymmetrical in the coordinate y was used. The function
(eq. (8) in ref. 5) is ) '

v = A12x2y + Alhxayz + A22x3y + Aehxjyj ¥ A32x)+y + A3hxhy5 (A1)

The effect of various combinations of terms on the calculasted critical
temperature difference, torsional frequency, and moment-twist relation was
investigated for a square cantilever plate (a/b = 2) by use of the small-
deflection theory of reference 5. The following table shows the results
obtained by starting with a single term A;, and then progressing through

other combinations to six terms:

Terms used Ah &2 M
K1 Ko - 2]
Aip 103.9 | 127.0 0.324 x 106
A10, Pop 57. 7} 77-5| -2718
Ayp, App, Azp 5.4 | 7131 .273
Ais, Aop, Ay, Aoy 57.2 1 77.4} .278 -
Aoy Mooy Asp, Ay, Apy, Agy | 50.0| 0.1} .273

where K; and K, represent constants that include the plate dimensions
and materisl properties.

Inasmuch as the tabulated velues were cobtained from an epplication
of the Rayleigh-Ritz procedure, the lowest value is the most accurate.
The use of six terms improves the accuracy less than 2 percent over three
terms and, consequently, is not worth the extra complication. The large-
deflection analysis thus can be made by use of only three terms. The
deflection function is nondimensionalized for this analysis and expressed

in the form .
e« mE )]

1+A‘l+A2-

(42)
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The relative values of these coefficients for the conditions given
in the preceding tsable were obtalned from the small-deflection analysis
of reference 5 for the square cantilever plate (a/b = 2) with the
following results:

A
Condition 1+ Ai + Aol + All+ Aol + A:_2+ Ap
Thermal buckling (A = 1, wfag = 0) L.61 -5.75 2.14
Torsional vibration (A = 0, afay = 1) 3.63 -.06 1.k2
Applied moment (A = O) 2.%6 -2.01 0.65
Applied moment (A = 0.5) 3.10 -3.20 1.10

The variation of f, with x/a for these four conditions has been
plotted in figure 13. The table indicates e wide veariation in the rela-
tive values of the coefficients but the plotted date show that the deflec-
tion shapes are all approximately the ssme. Then, so long as the calcu-
lations are used to indicate changes from the initial conditions, any of
the modes indicated should be satlisfactory.

In addition to the deflection function of equation (A2), a stress
function and a temperature function are required in the analysis and
have been selected to correspond to those of reference 5. For convenience,
the functions are expressed in nondimenslonsl form as follows:

- o - TTer -

£5 = (X)g (k)

The exponent { must be selected to describe best the measured tempera~
ture distribution st the time of inberest. Note that equation (Ak)
requires that the specified tempersture difference AT be the difference
between temperatures at the heated edges and the longitudinal center line.
The function f; has been chosen so that the stresses vanish on the free
boundaries. Along the root (x = 0) the function requires that the

plate be free to expand parallel to the y—axis Although this require-
ment does not indicate a "built-in" condition, it probably resembles the
actuel test conditionm.
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APPENDIX B
EVATUATION OF INTEGRATS AND RETATED FUNCTIONS

The integrals indicated in the enalysis have been evaluated in terms
of the plate dimensions and the nondimensional functions given in
gppendix A. The integrals sre as follows:

3°f 2% ° 3¢ a Zf 2
e [ ) n e el e
2
- (B8) Bl -+ -

2
apb (37f afl) _i28 & ¢
Iz‘ff <ax2 S i At ey o U

2 2 2 2 2
fai/ﬂb 1378, 35, L2 fl<af2) L, ¥y ary) i
oJ b 2|3y° ox ax2 Oy ox dy Ox Oy

2 2
158b(1 + A7 + Ap)= W03 35 35 315

2 2
and|(3%,) (5%, 3%, 3%, 3%,
Iu=ff =] +|l—% + 2-—2-+2(l-|.1.)aa dy dx

0v -b{\ox oy ax~ oy x 0, )
- b |-8+8A2+95§A22+8A+ + 2hAgA, +

2 2
2 184
2(1 - u) (%) <% + 51 + 32,?2 + 6A7 + SZ;A'E + 8A1A2)J (BL4)
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I = L 8:/: 8(x-‘a) [a(y-b) - a(y-l-‘o)]fz dy dx = 2 (B5)

1+A1+A2)2\5 T 9 3 b
(B6)

a Db 2 2
T T VTV S O ST
oJ b 3( T

For the square cantilever plate (a/b = 2) and the values of Ay

and Ap given in appendix A for the thermal-buckling mode, the
integrals Iy to I) reduce to the following when Poisson's ratlc p

equals 0.33:

2
_ (128} 135
n- () 3 (=7)
_ 2% ¢
275 T+ + D (28)

Iy = __1;220 (B9)
1, = 9_-25,61 (B10)

The integrals Is and TIg have not been included but are discussed
subsequently.

The critical temperature difference given by equation (18) then
becomes

AT, = 18.5 D 2[(@ + 1) (6 + 3)] (511}
Exte g
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The twist and applied moment are related to their corresponding nondimen-
sional quentities by equations (23) end (24) and may now be expressed as

Etaa

D

, 2 _
m = 0.035 Mo [Ete (B13)
(GNof D

Use of the thermal-buckling mode ylelds incorrect values for the
natural frequency and the twist due to applied moment. In addition, the
measured values differ slightly from the correct calculated values ss a
result of the imperfect clamping at the root of the cantilever plate.
For these reasons, the measured initlal velues of torsional frequency
and twist due to an applied moment are used in the calculations and the
changes produced by the heating cycle are calculated from the following
equations:

® = 0.035 9 (B12)

@ +m
7\=1--1—cp—+cp2-cpi2 (B1k)

(2)

The integrals I5 and Tg are needed only to calculate the initial

natural frequency and twist due to applied moment and, thus, have not been
eveluated for the mode shape of thermal buckling.

2 2
=1-A+39 - (B15)

In the calculations, results of which are presented in figures 9,
10, 11, and 12, the followlng quentitlies were used:

10.6 x 106 psi

12.8 x 1076 op-1
0.33

0.25 in.

20 in.

10 in.

0.35°

E

oedT Q
| O T O 1 T

D
™
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Figure 1l.- Dimensions and coordinste system of cantilever plate.
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Figure 4.- Calculated twist as a function of applied moment for several

combinations of temperature ratio and initial twist.
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Figure 5.- Calculated incremental stiffness as a function of temperature
ratio for several velues of initial twist.
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Figure 6.~ Calculated ratio of minimum incremental stiffness to initial
incremental stiffness as a function of initisl twist for several values
of applied moment.
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Figure 10.- Comparison of measured and calculated values of twist as &

function of temperature difference for three velues of the applied
moment .
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Figure 10.- Concluded.
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Figure 12.- Comparison of measured and calculated values of the frequency
ratio as a function of temperature difference.
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Figure .13.-~ Comparison of deflected shapes for thermal buckling, tor-
sional vibration, and twist due to an applied moment as given by
small-deflection theory. '
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